Diamond is the hardest natural material. The Mohs hardness scale, on which diamond is a '10' and corundum (sapphire) is a '9', doesn't adequately attest to this incredible hardness, as diamond is exponentially harder than corundum. Diamond is also the least compressible and stiffest substance. It is an exceptional thermal conductor - 4 times better than copper - which gives significance to diamonds being called 'ice'. Diamond has an extremely low thermal expansion, is chemically inert with respect to most acids and alkalis, is transparent from the far infrared through the deep ultraviolet, and is one of only a few materials with a negative work function (electron affinity). One consequence of the negative electron affinity is that diamonds repel water, but readily accept hydrocarbons such as wax or grease.
Diamonds do not conduct electricity well, although some are semiconductors. Diamond can burn if subjected to a high temperature in the presence of oxygen. Diamond has a high specific gravity; it is amazingly dense given the low atomic weight of carbon. The brilliance and fire of a diamond are due to its high dispersion and high refractive index. Diamond has the highest reflectance and index of refraction of any transparent substances.
Diamond gemstones are commonly clear or pale blue, but colored diamonds, called 'fancies', have been found in all the colors of the rainbow. Boron, which lends a bluish color, and nitrogen, which adds a yellow cast, are common trace impurities. Two volcanic rocks that may contain diamonds are kimberlite and lamproite. Diamond crystals frequently contain inclusions of other minerals, such as garnet or chromite. Many diamonds fluoresce blue to violet, sometimes strongly enough to be seen in daylight. Some blue-fluorescing diamonds phosphoresce yellow (glow in the dark in an afterglow reaction).
Diamond distinguishes itself from other engineering materials by an impressive list of excellent properties:
Coooooooooooool
ReplyDelete